1. Signaling Pathways
  2. MAPK/ERK Pathway
  3. ABA Receptor

ABA Receptor (脱落酸受体)

Abscisic Acid (ABA) Receptor

当植物受到各种非生物和生物胁迫的挑战时,内源性脱落酸含量增加,然后精确地启动一些细胞信号网络,启动适应性反应并调节许多发育过程。脱落酸与 PYR/PYL/RCAR(PYL)结合,然后二元复合物与 PP2C 发生物理相互作用。PYLs-PP2Cs 异二聚体阻止底物 SnRK2s 与 PP2Cs 结合,从而刺激 SnRK2s 激酶活性,而此前该活性被 PP2Cs 抑制。到目前为止,14 个 PYLs 成员,6-9 个 A 组 PP2Cs,3 个 III 亚类 当植物受到各种非生物和生物胁迫的挑战时,内源性脱落酸含量增加,然后精确地启动一些细胞信号网络,启动适应性反应并调节许多发育过程。脱落酸与 PYR/PYL/RCAR(PYL)结合,然后二元复合物与 PP2C 发生物理相互作用。PYLs-PP2Cs 异二聚体阻止底物 SnRK2s 与 PP2Cs 结合,从而刺激 SnRK2s 激酶活性,而此前该活性被 PP2Cs 抑制。到目前为止,14 个 PYLs 成员,6-9 个 A 组 PP2Cs,3 个 III 亚类 SnRK2s 和 4-9 个 A 组 bZIP TFs 参与核心 ABA 信号通路。在拟南芥中,有 14 个 PYLs 家族成员,分别命名为 PYR1 和 PYL1-PYL13,属于 START 超家族。迄今为止,已报道了 PYR1、PYL1、PYL2、PYL3、PYL5、PYL9、PYL10 和 PYL13的晶体结构。PYLs 介导的 ABA 信号转导可能在植物适应逆境和生长发育中发挥关键作用[1]

When plants are challenged by various abiotic and biotic stresses, the endogenous ABA content increases and then exquisitely initiates some cellular signaling network to switch on adaptive responses and to regulate numerous developmental processes. ABA binds to PYR/PYL/RCAR (PYLs) and then the binary complex physically interacts with PP2Cs. The PYLs-PP2Cs heterodimer precludes substrate SnRK2s binding to PP2Cs, and thus stimulates SnRK2s kinase activity, which was formerly inhibited by PP2Cs. So far, 14 members of PYLs, six to nine group-A PP2Cs, three subclass III SnRK2s and four to nine group-A bZIP TFs are involved in the core ABA signaling pathway. There are 14 PYLs family members, named PYR1 and PYL1-PYL13 in Arabidopsis, that belong to the START superfamily. To date, the crystal structures of PYR1, PYL1, PYL2, PYL3, PYL5, PYL9, PYL10, and PYL13 have been reported. PYLs-mediated ABA signaling could play a crucial role in favoring stress adaptation and growth development for plants[1].

ABA Receptor 相关产品 (2):

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-120161
    AS6 Antagonist
    AS6 (3'-Hexylsulfanylabscisic Acid) 可以与 PYL 蛋白结合,是一种 PYL 拮抗剂 (Kd: 对 PYL5 的 Kd: 0.48 μM)。
    AS6
  • HY-P10670
    CLE25 Peptide
    CLE25 peptide 从根部移动到叶子,并与受体样激酶 BAM1 和 BAM3 一起调节叶片中 NCED3 的表达。CLE25 peptide 通过调节脱落酸的累积来诱导气孔闭合,从而增强耐干旱胁迫的能力。
    CLE25 Peptide